

Open Platform for Energy Networks (OPEN)

OPEN provides a toolset for modelling, simulation and optimisation of smart local energy systems. The platform combines distributed energy resource modelling (e.g. for PV generation sources, battery energy storage systems, electric vehicles), energy market modelling, power flow simulation and multi-period optimisation for scheduling flexible energy resources.

The OPEN code is available on GitHub here [https://github.com/EPGOxford/OPEN/].

	Overview
	Installation

	Getting started

	Dependencies

	Platform Structure

	License

	References

	API Reference
	Assets

	Energy System

	Markets

	Networks

	Examples
	Electric Vehicle (EV) Smart Charging

	Flexible Heating Ventilation Air Conditioning (HVAC) Demand Side Response (DSR)

	Contributors

Overview

Oxford University’s Energy and Power Group’s Open Platform for Energy Networks (OPEN) provides a python toolset for modelling, simulation and optimisation of smart local energy systems.
The framework combines distributed energy resource modelling (e.g. for PV generation sources, battery energy storage systems, electric vehicles), energy market modelling, power flow simulation and multi-period optimisation for scheduling flexible energy resources.

OPEN and the methods used are presented in detail in the following publication:

	Morstyn, K. Collett, A. Vijay, M. Deakin, S. Wheeler, S. M. Bhagavathy, F. Fele and M. D. McCulloch; “An Open-Source Platform for Developing Smart Local Energy System Applications”; University of Oxford Working Paper, 2019

Installation

Download OPEN source code here [https://github.com/EPGOxford/OPEN/].

If using conda, we suggest creating a new virtual environment from the requirements.txt file.
First, add the following channels to your conda distribution if not already present:

conda config --add channels invenia
conda config --add channels picos
conda config --add channels conda_forge

To create the new virtual environment, run:

conda create --name <env_name> --file requirements.txt python=3.6

Getting started

The simplest way to start is to duplicate one of the case study main.py files:
- OxEMF_EV_case_study_v6.py
- Main_building_casestudy.py

Dependencies

	Pandas [https://pandas.pydata.org/]

	scipy [https://www.scipy.org/]

	cvxopt [https://cvxopt.org/]

	scikit-learn [https://scikit-learn.org/stable/]

	Pandapower [https://pandapower.readthedocs.io/en/v1.6.0/]

	Numpy [http://www.numpy.org/]

	Picos = 1.1.2 [https://picos-api.gitlab.io/picos/]

	Matplotlib [https://matplotlib.org/]

	numba [http://numba.pydata.org/numba-doc/latest/index.html/]

	requests [http://docs.python-requests.org/en/master/]

Platform Structure

OPEN is implemented in Python using an object orientated programming approach, with the aim of providing modularity, code reuse and extensibility.
Fig. 1 shows a universal modelling language (UML) class diagram of OPEN. OPEN has four important base classes: Asset, Network, Market and EnergySystem.

[image: UML class diagram of OPEN, showing the main classes, attributes and methods.]Fig. 1 - UML class diagram of OPEN, showing the main classes, attributes and methods.

OPEN includes two energy management system (EMS) methods for controllable Asset objects:
(i) one for multi-period optimisation with a simple ‘copper plate’ network model, and
(ii) the other for multi-period optimisation with a linear multi-phase distribution network model which includes voltage and current flow constraints.
OPEN has simulation methods for:
(i) open-loop optimisation, where the EMS method is run ahead of operation to obtain controllable Asset references over the EMS time series; and
(ii) for model predictive control (MPC), where the EMS method is implemented with a receding horizon so that the flexible Asset references are updated at each step of the EMS time-series.
Fig. 2 shows a high-level program flow diagram for an example MPC OPEN application.

[image: High-level program flow for an MPC OPEN application.]Fig. 2 - High-level program flow for an MPC OPEN application.

Energy System

In OPEN, a smart local energy system application is built around an EnergySystem object.

The EnergySystem Class has two types of methods
i) energy management system (EMS) methods which implement algorithms to
calculate Asset control references, and
ii) simulation methods which call an EMS method to obtain control
references for Asset objects, update the state of Asset objects by calling
their update control method and update the state of the Network by calling
its power flow method.
An EnergySystem has two separate time series, one for the EMS, and the
other for simulation.

The EnergySystem class can be extended by defining new EMS methods.
For example, new EMS methods could be used to implement more advanced non-convex optimisation strategies, or market-based scheduling with distributed optimisation and P2P negotiation.
The requirement for interoperability is that the Asset references are returned by the EMS method as a dictionary that can be read by simulation methods which call it.

Assets

An Asset object define DERs and loads.
Attributes include network location, phase connection and real and reactive
output power profiles over the simulation time-series.
Flexible Asset classes have an update control method, which is called by
EnergySystem simulation methods with control references to update the output
power profiles and state variables. The update control method also implements
constraints which limit the implementation of references.
OPEN includes the following Asset subclasses: NondispatchableAsset for
uncontrollable loads and generation sources, StorageAsset for storage systems
and BuildingAsset for buildings with flexible heating ventilation and air conditioning (HVAC).

New Asset subclasses can be defined which inherit the attributes from other Asset classes, but may have additional attributes and different update control method implementations.

Markets

A Market class defines an upstream market which the EnergySystem is connected
to. Attributes include the network location, prices of imports and exports
over the simulation time-series, the demand charge paid on the maximum demand
over the simulation time-series and import and export power limits.

The market class has a method which calculates the total revenue associated
with a particular set of real and reactive power profiles over the simulation
time-series.

Networks

OPEN offers two options for network modelling. For balanced power flow
analysis, the PandapowerNet class from the open-source python package
pandapower can be used. For unbalanced multi-phase power flow analysis,
OPEN offers the Network_3ph class.

The PandapowerNet class offers methods for balanced nonlinear power flow using a Netwon-Raphson solution method, and balanced linear power flow based on the DC approximation.
OPEN’s Network_3ph class offers nonlinear multi-phase power flow using the Z-Bus method, as well as linear multi-phase power flow using the fixed-point linearisation.
Wye and delta connected constant power loads/sources, constant impedance loads and capacitor banks can be modelled.
Lines are modelled as
\(\pi\)
-equivalent circuits.
Transformers with any combination of wye, wye-grounded or delta primary and secondary connections can also be modelled. Features that are planned to be added in future include voltage regulators and constant current loads.

License

For academic and professional use, please provide attribution to the papers describing OPEN. 1

References

	1

	
	Morstyn, K. Collett, A. Vijay, M. Deakin, S. Wheeler, S. M. Bhagavathy, F. Fele and M. D. McCulloch; “An Open-Source Platform for Developing Smart Local Energy System Applications”; University of Oxford Working Paper, 2019

OPEN API Reference

Assets

OPEN Asset module

Asset objects define distributed energy resources (DERs) and loads.
Attributes include network location, phase connection and real and reactive
output power profiles over the simulation time-series.
Flexible Asset classes have an update control method, which is called by
EnergySystem simulation methods with control references to update the output
power profiles and state variables. The update control method also implements
constraints which limit the implementation of references.
OPEN includes the following Asset subclasses: NondispatchableAsset for
uncontrollable loads and generation sources, StorageAsset for storage systems
and BuildingAsset for buildings with flexible heating, ventilation and air
conditioning (HVAC).

	
class System.Assets.Asset(bus_id, dt, T, phases=[0, 1, 2])

	An energy resource located at a particular bus in the network

	Parameters

	
	bus_id (float) – id number of the bus in the network

	dt (float) – time interval duration

	T (int) – number of time intervals

	phases (list, optional, default [0,1,2]) – [0, 1, 2] indicates 3 phase connection Wye: [0, 1] indicates an a,b connection Delta: [0] indicates a-b, [1] b-c, [2] c-a

	Returns

	

	Return type

	Asset

	
class System.Assets.Asset_3ph(bus_id, phases, dt, T)

	An energy resource located at a particular bus in the 3 phase network

	Parameters

	
	bus_id (float) – id number of the bus in the network

	phases (list) – [0, 1, 2] indicates 3 phase connection
Wye: [0, 1] indicates an a,b connection
Delta: [0] indicates a-b, [1] b-c, [2] c-a

	dt (float) – time interval duration

	T (int) – number of time intervals

	Returns

	

	Return type

	Asset

	
class System.Assets.BuildingAsset(Tmax, Tmin, Hmax, Cmax, T0, C, R, CoP_heating, CoP_cooling, Ta, bus_id, dt, T, dt_ems, T_ems)

	A building asset (use for flexibility from building HVAC)

	Parameters

	
	Tmax (float) – Maximum temperature inside the building (Degree C)

	= float (Tmin) – Minimum temperature inside the building (Degree C)

	Hmax (float) – Maximum power consumed by electrical heating (kW)

	Cmax (float) – Maximum power consumed by electrical cooling (kW)

	deltat (float) – Time interval after which system is allowed to change decisions (h)

	T0 (float) – Initial temperature inside the buidling (Degree C)

	C (float) – Thermal capacitance of building (kWh/Degree C)

	R (float) – Thermal resistance of building to outside environment(Degree C/kW)

	CoP_heating (float) – Coefficient of performance of the heat pump (N/A)

	CoP_cooling (float) – Coefficient of performance of the chiller (N/A)

	Ta (numpy.ndarray) – Ambient temperature (Degree C)

	alpha (float) – Coefficient of previous temperature in the temperature dynamics
equation (N/A)

	beta (float) – Coefficient of power consumed to heat/cool the building in the
temperature dynamics equation (Degree C/kW)

	gamma (float) – Coefficient of ambient temperature in the temperature dynamics
equation (N/A)

	Pnet (numpy.ndarray) – Input real power (kW)

	Qnet (numpy.ndarray) – Input reactive power (kVAR)

	Returns

	

	Return type

	Asset

	
update_control(Pnet)

	Update the power consumed by the HVAC at time interval t

	Parameters

	Pnet (numpy.ndarray) – input powers over the time series (kW)

	
class System.Assets.NondispatchableAsset(Pnet, Qnet, bus_id, dt, T, phases=[0, 1, 2], Pnet_pred=None, Qnet_pred=None)

	A 3 phase nondispatchable asset class (use for inflexible loads,
PVsources etc)

	Parameters

	
	Pnet (float) – uncontrolled real input powers over the time series

	Qnet (float) – uncontrolled reactive input powers over the time series (kVar)

	bus_id (float) – id number of the bus in the network

	dt (float) – time interval duration

	T (int) – number of time intervals

	phases (list, optional, default [0,1,2]) – [0, 1, 2] indicates 3 phase connection Wye: [0, 1] indicates an a,b connection Delta: [0] indicates a-b, [1] b-c, [2] c-a

	Pnet_pred (float or None) – predicted real input powers over the time series (kW)

	Qnet_pred (float or None) – predicted reactive input powers over the time series (kVar)

	Returns

	

	Return type

	Asset

	
class System.Assets.NondispatchableAsset_3ph(Pnet, Qnet, bus_id, phases, dt, T, Pnet_pred=None, Qnet_pred=None)

	A 3 phase nondispatchable asset class (use for inflexible loads,
PVsources etc)

	Parameters

	
	Pnet (float) – uncontrolled real input powers over the time series

	Qnet (float) – uncontrolled reactive input powers over the time series (kVar)

	bus_id (float) – id number of the bus in the network

	phases (list) – [0, 1, 2] indicates 3 phase connection
Wye: [0, 1] indicates an a,b connection
Delta: [0] indicates a-b, [1] b-c, [2] c-a

	dt (float) – time interval duration

	T (int) – number of time intervals

	Pnet_pred (float) – predicted real input powers over the time series (kW)

	Qnet_pred (float) – predicted reactive input powers over the time series (kVar)

	Returns

	

	Return type

	Asset

	
class System.Assets.StorageAsset(Emax, Emin, Pmax, Pmin, E0, ET, bus_id, dt, T, dt_ems, T_ems, phases=[0, 1, 2], Pmax_abs=None, c_deg_lin=None, eff=1, eff_opt=1)

	A storage asset (use for batteries, EVs etc.)

	Parameters

	
	Emax (numpy.ndarray) – maximum energy levels over the time series (kWh)

	Emin (numpy.ndarray) – minimum energy levels over the time series (kWh)

	Pmax (numpy.ndarray) – maximum input powers over the time series (kW)

	Pmin (numpy.ndarray) – minimum input powers over the time series (kW)

	E0 (float) – initial energy level (kWh)

	ET (float) – required terminal energy level (kWh)

	bus_id (float) – id number of the bus in the network

	dt (float) – time interval duration (s)

	T (int) – number of time intervals

	dt_ems (float) – time interval duration (energy management system time horizon) (s)

	T_ems (int) – number of time intervals (energy management system time horizon)

	phases (list, optional, default [0,1,2]) – [0, 1, 2] indicates 3 phase connection Wye: [0, 1] indicates an a,b connection Delta: [0] indicates a-b, [1] b-c, [2] c-a

	Pmax_abs (float) – max power level (kW)

	c_deg_lin (float) – battery degradation rate with energy throughput (£/kWh)

	eff (float, default 1) – charging efficiency (between 0 and 1)

	eff_opt (float, default 1) – charging efficiency to be used in optimiser (between 0 and 1).

	Pnet (numpy.ndarray) – Input real power over the simulation time series (kW)

	Qnet (numpy.ndarray) – Input reactive power over the simulation time series(kVAR)

	Returns

	

	Return type

	Asset

	
update_control(Pnet)

	Update the storage system power and energy profile

	Parameters

	Pnet (float) – input powers over the time series (kW)

	
update_control_t(Pnet_t, t)

	Update the storage system power and energy at time interval t

	Parameters

	
	Pnet_t (float) – input powers over the time series (kW)

	t (int) – time interval

	
class System.Assets.StorageAsset_3ph(Emax, Emin, Pmax, Pmin, E0, ET, bus_id, phases, dt, T, dt_ems, T_ems, Pmax_abs=None, c_deg_lin=None, eff=1, eff_opt=1)

	An 3 phase storage asset (use for batteries, EVs etc.)

	Parameters

	
	Emax (numpy.ndarray) – maximum energy levels over the time series (kWh)

	Emin (numpy.ndarray) – minimum energy levels over the time series (kWh)

	Pmax (numpy.ndarray) – maximum input powers over the time series (kW)

	Pmin (numpy.ndarray) – minimum input powers over the time series (kW)

	E0 (float) – initial energy level (kWh)

	ET (float) – required terminal energy level (kWh)

	bus_id (float) – id number of the bus in the network

	phases (list, optional, default [0,1,2]) – [0, 1, 2] indicates 3 phase connection
Wye: [0, 1] indicates an a,b connection
Delta: [0] indicates a-b, [1] b-c, [2] c-a

	dt (float) – time interval duration (s)

	T (int) – number of time intervals

	dt_ems (float) – time interval duration (energy management system time horizon) (s)

	T_ems (int) – number of time intervals (energy management system time horizon)

	phases – [0, 1, 2] indicates 3 phase connection Wye: [0, 1] indicates an a,b connection Delta: [0] indicates a-b, [1] b-c, [2] c-a

	Pmax_abs (float) – max power level (kW)

	c_deg_lin (float) – battery degradation rate with energy throughput (£/kWh)

	eff (float, default 1) – charging efficiency (between 0 and 1).

	eff_opt (float, default 1) – charging efficiency to be used in optimiser (between 0 and 1).

	Returns

	

	Return type

	Asset

	
update_control(Pnet)

	Update the storage system power and energy profile

	Parameters

	Pnet (numpy.ndarray) – input powers over the time series (kW)

	
update_control_t(Pnet_t, t)

	Update the storage system power and energy at time interval t

	Parameters

	
	Pnet_t (numpy.ndarray) – input powers over the time series (kW)

	t (int) – time interval

Energy System

OPEN Energy System Module.

The EnergySystem Class has two types of methods
i) energy management system (EMS) methods which implement algorithms to
calculate Asset control references, and
ii) simulation methods which call an EMS method to obtain control
references for Asset objects, update the state of Asset objects by calling
their updatecontrol method and update the state of the Network by calling
its power flow method.
An EnergySystem has two separate time series, one for the EMS, and the
other for simulation.

OPEN includes two EMS methods for controllable Asset objects:
(i) one for multi-period optimisation
with a simple ‘copper plate’ network model, and
(ii) one for multi-period optimisation with a linear multi-phase
distribution network model which includes voltage and current flow
constraints.

Open has simulation methods for:
(i) open-loop optimisation, where the EMS method is run ahead of operation
to obtain controllable Asset references over the EMS time-series; and
(ii) for MPC, where the EMS method is implemented with a receding horizon
so that the flexible Asset references are updated at each step of the EMS
time series.

	
class System.EnergySystem.EnergySystem(storage_assets, nondispatch_assets, network, market, dt, T, dt_ems, T_ems, building_assets=[])

	Base Energy Sysem Class

	Parameters

	
	storage_assets (list of objects) – Containing details of each storage asset

	building_assets (list of objects) – Containsing details of each building asset

	nondispatch_assets (list of objects) – Containsing details of each nondispatchable asset

	network (object) – Object containing information about the network

	market (object) – Object containing information about the market

	dt_ems (float) – EMS time interval duration (hours)

	T_ems (int) – Number of EMS time intervals

	dt (float) – time interval duration (hours)

	T (int) – number of time intervals

	Returns

	

	Return type

	EnergySystem

	
EMS_3ph_linear_t0(t0, i_unconstrained_lines=[], v_unconstrained_buses=[])

	Energy management system optimization assuming 3 phase linear network
model for Model Predictive Control interval t0

	Parameters

	
	self (EnergySystem object) – Object containing information on assets, market, network and time
resolution.

	t0 (int) – Interval in Model Predictive Control. If open loop, t0 = 0

	i_unconstrained_lines (list) – List of network lines which have unconstrained current

	v_unconstrained_buses (list) – List of buses at which the voltage is not constrained

	Returns

	Output –

	The following numpy.ndarrays are present depending upon asset mix:

	P_ES_val : Charge/discharge power for storage assets (kW)
P_import_val : Power imported from central grid (kW)
P_export_val : Power exported to central grid (kW)
P_demand_val : System power demand at energy management time

resolution (kW)

	PF_networks_linNetwork 3ph list of objects, one for each

	optimisation interval, storing the linear power
flow model used to formulate netowrk
constraints

	Return type

	dictionary

	
EMS_copper_plate()

	Energy management system optimization assuming all assets connected to
a single node.

	Parameters

	self (EnergySystem object) – Object containing information on assets, market, network and time
resolution.

	Returns

	Output –

	The following numpy.ndarrays are present depending upon asset mix:

	P_ES_val : Charge/discharge power for storage assets (kW)
P_BLDG_val :Builfing power consumption (kW)
P_import_val :Power imported from central grid (kW)
P_export_val :Power exported to central grid (kW)
P_demand_val :System power demand at energy management time

resolution

	Return type

	dictionary

	
EMS_copper_plate_t0(t0)

	Setup and run a basic energy optimisation (single copper plate network
model) for MPC interval t0

	
EMS_copper_plate_t0_c1deg(t0)

	setup and run a basic energy optimisation (single copper plate network
model) for MPC interval t0

	
simulate_network()

	Run the Energy Management System in open loop and simulate a pandapower
network.

	Parameters

	self (EnergySystem object) – Object containing information on assets, market, network and time
resolution.

	Returns

	Output –

	The following numpy.ndarrays are present depending upon asset mix:

	buses_Vpu : Voltage magnitude at bus (V)
buses_Vang : Voltage angle at bus (rad)
buses_Pnet : Real power at bus (kW)
buses_Qnet : Reactive power at bus (kVAR)
Pnet_market : Real power seen by the market (kW)
Qnet_market : Reactive power seen by the market (kVAR)
P_ES_ems : Charge/discharge power for storage assets at energy

management time resolution (kW)

	P_BLDG_ems :Builfing power consumption at energy management

	time resolution (kW)

	P_import_ems :Power imported from central grid at energy

	management time resolution (kW)

	P_export_ems :Power exported to central grid at energy

	management time resolution(kW)

	P_demand_ems :System power demand at energy management time

	resolution (kW)

	Return type

	dictionary

	
simulate_network_3phPF(ems_type='3ph', i_unconstrained_lines=[], v_unconstrained_buses=[])

	Run the Energy Management System in open loop and simulate an IEEE 13
bus network either copper plate or 3ph

	Parameters

	
	self (EnergySystem object) – Object containing information on assets, market, network and time
resolution.

	ems_type (string) – Identifies whether the system is copper plate or 3ph. Default 3ph

	i_unconstrained_lines (list) – List of network lines which have unconstrained current

	v_unconstrained_buses (list) – List of buses at which the voltage is not constrained

	Returns

	Output –

	PF_network_resNetwork power flow results stored as a list of

	objects

	P_ES_emsCharge/discharge power for storage assets at energy

	management time resolution (kW)

	P_import_ems :Power imported from central grid at energy

	management time resolution (kW)

	P_export_ems :Power exported to central grid at energy

	management time resolution(kW)

	P_demand_ems :System power demand at energy management time

	resolution (kW)

	Return type

	dictionary

	
simulate_network_3phPF_lean(ems_type='3ph')

	run the EMS in open loop and simulate a 3-phase AC network

	
simulate_network_mpc_3phPF(ems_type='3ph', i_unconstrained_lines=[], v_unconstrained_buses=[])

	Run the Energy Management System using Model Predictive Control (MPC)
and simulate an IEEE 13 bus network either copper plate or 3ph

	Parameters

	
	self (EnergySystem object) – Object containing information on assets, market, network and time
resolution.

	ems_type (string) – Identifies whether the system is copper plate or 3ph. Default 3ph

	i_unconstrained_lines (list) – List of network lines which have unconstrained current

	v_unconstrained_buses (list) – List of buses at which the voltage is not constrained

	Returns

	Output –

	PF_network_resNetwork power flow results stored as a list of

	objects

	P_ES_emsCharge/discharge power for storage assets at energy

	management time resolution (kW)

	P_import_ems :Power imported from central grid at energy

	management time resolution (kW)

	P_export_ems :Power exported to central grid at energy

	management time resolution(kW)

	P_demand_ems :System power demand at energy management time

	resolution (kW)

	Return type

	dictionary

Markets

OPEN Markets module

A Market class defines an upstream market which the EnergySystem is connected
to. Attributes include the network location, prices of imports and exports
over the simulation time-series, the demand charge paid on the maximum demand
over the simulation time-series and import and export power limits.

The market class has a method which calculates the total revenue associated
with a particular set of real and reactive power profiles over the simulation
time-series.

	
class System.Markets.Market(bus_id, prices_export, prices_import, demand_charge, Pmax, Pmin, dt_market, T_market, FR_window=None, FR_capacity=None, FR_SOC_max=0.6, FR_SOC_min=0.4, FR_price=0.005, stochastic_date=None, daily_connection_charge=0.13)

	A market class to handle prices and other market associated parameters.

	Parameters

	
	bus_id (int) – id number of the bus in the network

	prices_export (numpy.ndarray) – price paid for exports (£/kWh)

	prices_import (numpy.ndarray) – price charged for imports (£/kWh)

	demand_charge (float) – charge for the maximum demand over the time series (£/kWh)

	Pmax (float) – maximum import power over the time series (kW)

	Pmin (float) – minimum import over the time series (kW)

	dt_market (float) – time interval duration (minutes)

	T_market (int) – number of time intervals

	FR_window (int) – binary value over time series to indicate when frequency response has
been offered (0,1)

	FR_capacity (float) – capacity of frequency response offered (kW)

	FR_SOC_max (float) – max SOC at which frequency response can still be fulfilled if needed

	FR_SOC_min (float) – min SOC at which frequency response can still be fulfilled if needed

	FR_price (float) – price per kW capacity per hour avaiable (£/kW.h)

	Returns

	

	Return type

	Market

	
calculate_revenue(P_import_tot, dt)

	Calculate revenue according to simulation results

	Parameters

	
	P_import_tot (float) – Total import power to the site over the time series (kW)

	dt (float) – simulation time interval duration (minutes)

	c_deg_lin (float) – cost of battery degradation associated with each kWh throughput
(£/kWh)

	Returns

	revenue – Total revenue generated during simulation

	Return type

	float

Networks

OPEN 3 phase networks module

OPEN offers two options for network modelling. For balanced power flow
analysis, the PandapowerNet class from the open-source python package
pandapower can be used. For unbalanced multi-phase power flow analysis,
OPEN offers the Network_3ph class.

	
class System.Network_3ph_pf.Network_3ph

	A 3-phase electric power network. Default to an unloaded IEEE 13 Bus Test
Feeder.

	Parameters

	
	bus_df (pandas.DataFrame) – bus information, columns: [‘name’,’number’,’load_type’,’connect’,
‘Pa’,’Pb’,’Pc’,’Qa’,’Qb’,’Qc’], load_type: ‘S’ (slack),’PQ’,’Z’ or ‘I’
(only S and PQ are currently implemented),
connect: ‘Y’ (wye) or ‘D’ (delta), ‘Px’ in (kW),
‘Qx’ in (kVAr)

	capacitor_df (pandas.DataFrame) – capacitor information, columns [‘name’,’number’,’bus’,’kVln’,
‘connect’,’Qa’,’Qb’,’Qc’], connect: ‘Y’ (wye) or ‘D’ (delta),
‘kVln’: line-to-line base voltage, ‘Qx’ in (kVAr)

	di_iter (np.ndarray) – change in the sum of abs phase currents at each Z-Bus iteration

	dv_iter (np.ndarray) – change in the sum of abs phsae voltages at each Z-Bus iteration

	i_abs_max (numpy.ndarray) – max abs line phase currents [line, phase] (|A|)

	i_PQ_iter (numpy.ndarray) – current injected at each phase at each Z-Bus iteration [iter,phase] (A)

	i_PQ_res (numpy.ndarray) – power flow result, current injected at each phase (excl. slack) (A)

	i_net_res (numpy.ndarray) – power flow result, current injected at each phase (A)

	i_slack_res (numpy.ndarray) – power flow result, current injected at slack bus phases (A)

	Jabs_dPQdel_list (list of numpy.ndarray) – linear line abs current model, [P_delta,Q_delta] coeff. matrix list

	Jabs_dPQwye_list (list of numpy.ndarray) – linear line abs current model, [P_wye,Q_wye] coeff. matrix list

	Jabs_I0_list (list of numpy.ndarray) – linear line abs current model, constant vector list

	J_dPQdel_list (list of numpy.ndarray) – linear line current model, [P_delta,Q_delta] coeff. matrix list

	J_dPQwye_list (list of numpy.ndarray) – linear line current model, [P_wye,Q_wye] coeff. matrix list

	J_I0_list (list of numpy.ndarray) – linear line current model, constant vector list

	K_del (numpy.ndarray) – linear abs voltage model, [P_delta,Q_delta] coeff. matrix

	K_wye (numpy.ndarray) – linear abs voltage model, [P_wye,Q_wye] coeff. matrix

	K0 (numpy.ndarray) – linear abs voltage model, constant vector

	line_config_df (pandas.DataFrame) – information on line configurations, columns: [‘name’,’Zaa’,
‘Zbb’,’Zcc’,’Zab’,’Zac’,’Zbc’,’Baa’,’Bbb’,’Bcc’,’Bab’,’Bac’,’Bbc’],
‘Zxx’ in (Ohms/length unit), ‘Bxx’ in (S/length unit) [base voltage of
Vslack]

	line_df (pandas.DataFrame) – line information: [‘busA’,’busB’,’Zaa’,’Zbb’,’Zcc’,’Zab’,’Zac’,’Zbc’,
‘Baa’,’Bbb’,’Bcc’,’Bab’,’Bac’,’Bbc’], ‘Zxx’ in (Ohms) ‘Bxx’ in (S)
[base voltage of Vslack]

	line_info_df – matches lines to their configurations: [‘busA’,’busB’,’config’,
‘length’,’Z_conv_factor’,’B_conv_factor’], Z,B_conv_factors used to
match ‘lenth’ units to line_config_df ‘Zxx’ and ‘Bxx’ values

	list_Yseries (list of numpy.ndarray) – list of series admittance matrices for the lines

	list_Yshunt (list of numpy.ndarray) – list of shunt admittance matrices for the lines

	M_del (numpy.ndarray) – linear voltage model, [P_delta,Q_delta] coeff. matrix

	M_wye (numpy.ndarray) – linear voltage model, [P_wye,Q_wye] coeff. matrix

	M0 (numpy.ndarray) – linear abs voltage model, constant vector

	N_buses (int) – number of buses

	N_capacitors (int) – number of capacitors

	N_iter (int) – number of Z-Bus power flow solver iterations

	N_phases (int) – number of phases

	N_lines (int) – number of lines

	N_transformers (int) – number of transformers

	res_bus_df (pandas.DataFrame) – power flow result, bus information, columns: [‘name’,’number’,
‘load_type’,’connect’,’Sa’,’Sb’,’Sc’,’Va’,’Vb’,’Vc’,’Ia’,’Ib’,’Ic’]
load_type: ‘S’ (slack),’PQ’,’Z’ or ‘I’ (only S and PQ are currently
implemented), connect: ‘Y’ (wye) or ‘D’ (delta), ‘Sx’ in (kVA),
‘Vx’ in (V), ‘Ix’ in (A)

	res_lines_df (pandas.DataFrame) – power flow result, line information, columns: [‘busA’,’busB’,’Sa’,’Sb’,
‘Sc’,’Ia’,’Ib’,’Ic’,’VAa’,’VAb’,’VAc’,’VBa’,’VBb’,’VBc’], ‘Sx’ in (VA),
‘Ix’ in (A), bus A voltages ‘VAx’ in (V), bus B voltages ‘VBx’ in (V).

	S_del_lin0 (numpy.ndarray) – linear model, delta apparent power load (kVA)

	S_PQloads_del_res (numpy.ndarray) – power flow result, delta apparent power load (kVA)

	S_PQloads_wye_res (numpy.ndarray) – power flow result, wye apparent power load (kVA)

	S_net_res (pandas.DataFrame) – power flow result, apparent power load at each phase (VA)

	S_wye_lin0 – linear model, delta apparent power load (kVA) Y :

	transformer_df (pandas.DataFrame) – transformer information, columns: [‘busA’,’busB’,’typeA’,’typeB’,
‘Zseries’,’Zshunt’], typex: ‘wye-g’, ‘wye’ or ‘delta’

	v_abs_min (numpy.ndarray) – min abs bus voltages [bus, phase] (|V|)

	v_abs_max (numpy.ndarray) – max abs bus voltages [bus, phase] (|V|)

	v_iter (numpy.ndarray) – bus phase voltages at each Z-Bus iteration [iteration, phase]

	v_lin_abs_res (numpy.ndarray) – linear model result, bus phase abs voltage (excl. slack) (|V|)

	v_lin_res (numpy.ndarray) – linear model result, bus phase voltage (excl. slack) (V)

	v_net_lin_abs_res (numpy.ndarray) – linear model result, bus phase abs voltage (|V|)

	v_net_lin_res (numpy.ndarray) – linear model result, bus phase voltage (V)

	v_net_lin0 (numpy.ndarray) – linear model, nominal bus phase voltages (V)

	v_net_res (numpy.ndarray) – power flow result, bus phase voltages (V)

	vs (numpy.ndarray) – slack bus phase voltages (V)

	Vslack (float) – slack bus line-to-line voltage magnitude (|V|)

	Vslack_ph (float) – slack bus line-to-phase voltage magnitude (|V|)

	v_res (numpy.ndarray) – power flow result, bus phase voltages (excl. slack) (V)

	Y (numpy.ndarray) – admittance matrix (excl. slack) (S)

	Ynet (numpy.ndarray) – admittance matrix (S)

	Y_non_singular – admittance matrix with 1e-20*I added (excl. slack) (S) [base voltage of
Vslack]

	Yns (numpy.ndarray) – admittance matrix partition [Yss, Ysn; Yns, Y] (S) [base voltage of
Vslack]
voltage of Vslack

	Ysn (numpy.ndarray) – admittance matrix partition [Yss, Ysn; Yns, Y] (S) [base voltage of
Vslack]

	Yss (numpy.ndarray) – admittance matrix partition [Yss, Ysn; Yns, Y] (S) [base voltage of
Vslack]

	Z – impedance matrix (Ohm) [base voltage of Vslack]

	Znet – impedance matrix (excl. slack) (Ohm) [base voltage of Vslack]

	Returns

	

	Return type

	Network_3ph

	
clear_loads()

	Removes all real and reactive power loads from the network by clearing
bus_df.

	
linear_model_setup(v_net_lin0, S_wye_lin0, S_del_lin0)

	Set up a linear model based on A. Bernstein, et al., “Load Flow in
Multiphase Distribution Networks: Existence, Uniqueness,
Non-Singularity and Linear Models,” IEEE Transactions on Power Systems,
2018.

	Parameters

	
	v_net_lin0 (numpy.ndarray) – nominal operating point, bus phase voltages (V)

	S_wye_lin0 (numpy.ndarray) – nominal operating point, apparent wye power loads (kVA)

	S_del_lin0 (numpy.ndarray) – nominal operating point, apparent delta power loads (kVA)

	
linear_pf()

	Solves the linear model based on A. Bernstein, et al., “Load Flow in
Multiphase Distribution Networks: Existence, Uniqueness,
Non-Singularity and Linear Models,” IEEE Transactions on Power Systems,
2018. First run linear_model_setup().

	
set_load(bus_id, ph_i, Pph, Qph)

	Sets the P and Q load on a particular bus and phase

	Parameters

	
	bus_id (int) – the load bus id

	ph_i (int) – the load phase (either 0, 1 or 2)

	Pph (float) – nominal operating point, apparent wye load (kVA)

	Qph (float) – nominal operating point, apparent delta load (kVA)

	
set_pf_limits(v_abs_min_val, v_abs_max_val, i_abs_max_val)

	Sets the abs bus phase voltage limits and abs line phase current limits

	Parameters

	
	v_abs_min_val (float) – minimum abs voltage bus phase voltage limit

	v_abs_max_val (float) – maximum abs voltage bus phase voltage limit

	i_abs_max_val (float) – maximum abs line phase current limit

	
setup_network_ieee13()

	Set up the network as the unloaded IEEE 13 Bus Test Feeder

	
update_YandZ()

	Update the network admittance and impedance matrices

	
update_line_pf_results()

	Updates the line power flow results dataframe res_lines_df, based on
the results of zbus_pf().

	
v_flat()

	Get the vector of 1 p.u. balanced bus phase voltages

	Returns

	

	Return type

	numpy.ndarray

	
zbus_pf()

	Solves the nonlinear power flow problem using the Z-bus method
from M. Bazrafshan, N. Gatsis, “Comprehensive Modeling of Three-Phase
Distribution Systems via the Bus Admittance Matrix,” IEEE Transactions
on Power Systems, 2018.

OPEN Examples

For further details on the example case studies, please refer here. 1

Electric Vehicle (EV) Smart Charging

The Electric Vehicle Smart Charging case study considers the smart charging of EVs within an unbalanced three-phase distribution network.
The case study considers a business park where 80 EVs are charged at 6.6 kW charge points.
The objective is to charge all of the vehicles to their maximum energy level prior to departure, at lowest cost.

Flexible Heating Ventilation Air Conditioning (HVAC) Demand Side Response (DSR)

The building energy management case study focuses on a building with a flexible HVAC unit which is controlled in order to minimise costs,
with the constraint that the internal temperature remains between 16oC and 18oC.

	1

	
	Morstyn, K. Collett, A. Vijay, M. Deakin, S. Wheeler, S. M. Bhagavathy, F. Fele and M. D. McCulloch; “An Open-Source Platform for Developing Smart Local Energy System Applications”; University of Oxford Working Paper, 2019

Authors

OPEN was developed by the Energy and Power Group, Engineering Science, University of Oxford.

Website [http://eng.ox.ac.uk/energy-and-power-group/]

	Thomas Morstyn

	Avinash Vijay

	Katherine Collet

	Filiberto Fele

	Matthew Deakin

	Sivapriya Mothilal Bhagavathy

	Scot Wheeler

	Malcolm McCulloch

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 System	

 	
 	
 System.Assets	

 	
 	
 System.EnergySystem	

 	
 	
 System.Markets	

 	
 	
 System.Network_3ph_pf	

Index

 A
 | B
 | C
 | E
 | L
 | M
 | N
 | S
 | U
 | V
 | Z

A

 	
 	Asset (class in System.Assets)

 	
 	Asset_3ph (class in System.Assets)

B

 	
 	BuildingAsset (class in System.Assets)

C

 	
 	calculate_revenue() (System.Markets.Market method)

 	
 	clear_loads() (System.Network_3ph_pf.Network_3ph method)

E

 	
 	EMS_3ph_linear_t0() (System.EnergySystem.EnergySystem method)

 	EMS_copper_plate() (System.EnergySystem.EnergySystem method)

 	
 	EMS_copper_plate_t0() (System.EnergySystem.EnergySystem method)

 	EMS_copper_plate_t0_c1deg() (System.EnergySystem.EnergySystem method)

 	EnergySystem (class in System.EnergySystem)

L

 	
 	linear_model_setup() (System.Network_3ph_pf.Network_3ph method)

 	
 	linear_pf() (System.Network_3ph_pf.Network_3ph method)

M

 	
 	Market (class in System.Markets)

N

 	
 	Network_3ph (class in System.Network_3ph_pf)

 	
 	NondispatchableAsset (class in System.Assets)

 	NondispatchableAsset_3ph (class in System.Assets)

S

 	
 	set_load() (System.Network_3ph_pf.Network_3ph method)

 	set_pf_limits() (System.Network_3ph_pf.Network_3ph method)

 	setup_network_ieee13() (System.Network_3ph_pf.Network_3ph method)

 	simulate_network() (System.EnergySystem.EnergySystem method)

 	simulate_network_3phPF() (System.EnergySystem.EnergySystem method)

 	simulate_network_3phPF_lean() (System.EnergySystem.EnergySystem method)

 	
 	simulate_network_mpc_3phPF() (System.EnergySystem.EnergySystem method)

 	StorageAsset (class in System.Assets)

 	StorageAsset_3ph (class in System.Assets)

 	System.Assets (module)

 	System.EnergySystem (module)

 	System.Markets (module)

 	System.Network_3ph_pf (module)

U

 	
 	update_control() (System.Assets.BuildingAsset method)

 	(System.Assets.StorageAsset method)

 	(System.Assets.StorageAsset_3ph method)

 	
 	update_control_t() (System.Assets.StorageAsset method)

 	(System.Assets.StorageAsset_3ph method)

 	update_line_pf_results() (System.Network_3ph_pf.Network_3ph method)

 	update_YandZ() (System.Network_3ph_pf.Network_3ph method)

V

 	
 	v_flat() (System.Network_3ph_pf.Network_3ph method)

Z

 	
 	zbus_pf() (System.Network_3ph_pf.Network_3ph method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/OxEMF_logo.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Open Platform for Energy Networks (OPEN)

 		
 Overview

 		
 Installation

 		
 Getting started

 		
 Dependencies

 		
 Platform Structure

 		
 Energy System

 		
 Assets

 		
 Markets

 		
 Networks

 		
 License

 		
 References

 		
 API Reference

 		
 Assets

 		
 Energy System

 		
 Markets

 		
 Networks

 		
 Examples

 		
 Electric Vehicle (EV) Smart Charging

 		
 Flexible Heating Ventilation Air Conditioning (HVAC) Demand Side Response (DSR)

 		
 Contributors

_static/up.png

_static/up-pressed.png

